11/08/2021

@ We use cookies to improve your experience on our websites and for advertising. Privacy Statement

= Microsoft | Tech Community ~ Community Hubs v Blogs Events -~ Microsoft Learn v Lounge
> Windows > Networking
Home Server Blog > Troubleshooting Kubernetes Networking on Windows: Part 1

Back to Blog < Newer Article Older Article >

Troubleshooting Kubernetes Networking on Windows: Part 1

By @ David Schott

Published May 15 2019 06:00 AM o 26.2K Views

We've all been there: Sometimes things just don't work the way they should even though we followed everything downto a T.

Troubleshooting Kubernetes Networking on Windows: Part 1 - Microsoft Tech Community

Kubernetes in particular, is not easy to troubleshoot — even if you're an expert. There are multiple components involved in the creation/deletion of containers that must all harmoniously interoperate end-to-end. For example:

* Inbox platform services (e.g. WinNAT, HNS/HCS, VFP)

® Container runtimes & Go-wrappers (e.g. Dockershim, ContainerD, hcsshim)
* Container orchestrator processes (e.g. kube-proxy, kubelet)

® CNI network plugins (e.g. win-bridge, win-overlay, azure-cni)

* |PAM plugins (e.g. host-local)

* Any other host-agent processes/daemons (e.g. FlannelD, Calico-Felix, etc.)

® .. (moreto come!)

This, in turn, also means that the potential problem space to investigate can grow overwhelmingly large when things do end up breaking. We often hear the phrase: “/ don't even know where to begin.”

The intent of this blog post is to educate the reader on the available tools and resources that can help unpeel the first few layers of the onion; it is not intended to be a fully exhaustive guide to root-cause every possible bug for every possible configuration. However, by the end one should at least be able to narrow down on an

observable symptom through a pipeline of analytical troubleshooting steps and come out with a better understanding of what the underlying issue could be.

NOTE: Most of the content in this blog is directly taken from the amazing Kubecon Shanghai "18 video “Understanding Windows Container Networking_in Kubernetes Using_a Real Story” by Cindy Xing (Huawei) and Dinesh Kumar Govindasamy (Microsoft).

Table of Contents

1. Ensure Kubernetes is installed and running_correctly

2. Use a script to validate basic cluster connectivity

3. Query the built-in Kubernetes event logs

4. Analyze kubelet, kube-proxy logs

5. Inspect CNI network plugin configuration

6. Verify HNS networking state

7. Take a snapshot of your network using_CollectLogs.ps1

8. Capture packets and analyze network flows

Step 1: Ensure Kubernetes is installed and running correctly

As mentioned in the introduction, there are a lot of different platform and open-source actors that are needed to operate a Kubernetes cluster. It can be hard to keep track of all of them - especially given that they release at a different cadence.

One quick sanity-check that can be done without any external help is to employ a validation script that verifies supported bits are installed:

PS C:\k\yaml> .\Debug-WindowsNode.psl

Checking for common problems with Windows Kubernetes nodes

Container Host OS Product Name: Windows Server 2019 Datacenter
Container Host OS Build Label: 17763.1.amd64fre.rs5 release.180914-1434

Is Windows Serv 2819 188ms
'Containers' feature installed 3.31s
HNS running
_ 1s 1nstalled - 'Docker' or 'com.Docker.Service'
running 47ms
1s 1n path 251ms
Should be a supported versio
Docker version: 18.09.5

1 running kubelet.ex
is 1 running kube-proxy.

Verifying Kubernetes is installed

While trivial, another step that can be equally easily overlooked is ensuring that all the components are indeed running. Any piece of software can crash or enter a deadlock-like state, including host-agent processes such as kubelet.exe or kube-proxy.exe. This can result in unexpected cluster behavior and detached node/container

states, but thankfully it's easy to check. Running a simple ps command usually suffices:

EN Administrator: Windows PowerShell

PS C:\Users\Administrator> ps |findstr
276 16 24148 27392 D . 3€ 1568 2 flanneld
347 21 42164 56220 1. 4708 2 kubelet
pEL 18 PEEYL 28436 0. 4. 8136 2 kube-proxy
PS C:\Users\Administrator>

Typical Kubernetes processes running

Unfortunately, the above command won't capture that the processes themselves could be stuck waiting in a deadlock-like state; we will cover this case in step 4.

Step 2: Use a script to validate basic cluster connectivity

Before diving head-first into analyzing HNS resources and verbose logs, there is a handy Pester test suite which allows you to validate basic connectivity scenarios and report on success/failure here. The only pre-requisite in order to run it is that you are using Windows Server 2019 (requires minor fix-up otherwise) and that you

have more than one node for the remote pod test:

PS C:\k> .\ValidateKubernetes.Pester.tests.psl

[+] should have windowservercore

[+] kubelet.exe is running
[+] kube-pr » 1s running
[+] anneld.exe 1s running

aiting for the deployment
adyReplicas=2; replicas=4;
ailting for the deployment
adyReplicas=2; replicas=4;
aiting for the deployment
adyReplicas=2; replicas=4;
aiting for the deployment
adyReplicas=2; replicas=4;
alting for the deployment
adyReplicas=2; replicas=4;

(win-webserver) to be complete. @{availableReplicas=2;
unavailableReplicas=2; updatedReplicas=4}
(win-webserver) to be complete. @{availableReplicas=2;
unavailableReplicas=2; updatedReplicas=4}
(win-webserver) to be complete. @{availableReplicas=2;
unavailableReplicas=2; updatedReplicas=4}
(win-webserver) to be complete. @{availableReplicas=2;
unavailableReplicas=2; updatedReplicas=4}
(win-webserver) to be complete. @{availableReplicas=2;

[+] should have more than 1 local container 32
[+] should have at least
hecking win-webserver-7fe4f4ffof-2dg2g has IP
hecking win-webserver-7f64f4ff9f-5s9qx has IP
hecking win-webserver-7f64f4ffof-j9648 has IP

remote container

[+] Pods should have correct IP 2.19s
esting from win-webserver-7fe64f4ffof-2dg2g 10.244.17.49

Snippet from Kubernetes Connectivity Test Suite

The intent of running this script is to have a quick glance of overall networking health, as well as hopefully accelerate subsequent steps by knowing what to look for.

Step 3: Query the built-in Kubernetes event logs

After verifying that all the processes are running as expected, the next step is to query the built-in Kubernetes event logs and see what the basic built-in health-checks that ship with K8s have to say:

S C:\k\yvaml> kubectl get pods wide
NAME READY STATUS
vin-webserver-69495c7694-7énxd /1 ContainerCreating © <none>

vin-webserver-69495c7694-tjf7+ B/1 ContainerCreating 5 i <nones
S C:\k\yaml> kubectl describe po/win-webserver-69495c7694-76nxd_

Kubernetes pods that are stuck in "ContainerCreating" state

More Information about misbehaving Kubernetes resources such as event logs can be viewed using the "kubectl describe” command. For example, one frequent misconfiguration on Windows is having a misconfigured “pause” container with a kernel version that doesn’t match the host OS:

https://techcommunity.microsoft.com/t5/networking-blog/troubleshooting-kubernetes-networking-on-windows-part-1/ba-p/508648

unavailableReplicas=2; updatedReplicas=4}

10.244.17.49
10.244.17.50
10.244.19.32
hecking win-webserver-7fe4f4ffof-p2dhw has IP address 10.244.19.31

win-24elfepi8d9
win-24elfepi8d9

Ski B fmater aavigetion

Co-Authors

@ David Schott

Version history

Last update: Mar 312021 09:54 AM
Updated by: David Schott

Accept all

Manage cookies

Sign

L

177

https://techcommunity.microsoft.com/
https://techcommunity.microsoft.com/t5/windows-server/ct-p/Windows-Server
https://techcommunity.microsoft.com/t5/networking-blog/bg-p/NetworkingBlog
https://techcommunity.microsoft.com/t5/networking-blog/bg-p/NetworkingBlog
https://techcommunity.microsoft.com/t5/networking-blog/dpdk-releases-v19-05-introduces-windows-support/ba-p/633927
https://techcommunity.microsoft.com/t5/networking-blog/synthetic-accelerations-in-a-nutshell-windows-server-2016/ba-p/535571
https://techcommunity.microsoft.com/t5/user/viewprofilepage/user-id/149420
https://techcommunity.microsoft.com/t5/user/viewprofilepage/user-id/149420
https://github.com/kubernetes-sigs/windows-testing/blob/188e78fe46b38601c9b7155c5e59a9a7199d9e39/scripts/Debug-WindowsNode.ps1
https://github.com/Microsoft/SDN/blob/master/Kubernetes/windows/test/ValidateKubernetes.Pester.tests.ps1
https://www.youtube.com/watch?v=tTZFoiLObX4&feature=youtu.be
https://techcommunity.microsoft.com/t5/user/viewprofilepage/user-id/149420
https://techcommunity.microsoft.com/t5/user/viewprofilepage/user-id/149420
https://techcommunity.microsoft.com/t5/user/viewprofilepage/user-id/149420
https://www.microsoft.com/
https://techcommunity.microsoft.com/plugins/common/feature/oauth2sso/sso_login_redirect?lang=en&referer=https%3A%2F%2Ftechcommunity.microsoft.com%2Ft5%2Fnetworking-blog%2Ftroubleshooting-kubernetes-networking-on-windows-part-1%2Fba-p%2F508648
https://techcommunity.microsoft.com/plugins/common/feature/oauth2sso/sso_login_redirect?lang=en&referer=https%3A%2F%2Ftechcommunity.microsoft.com%2Ft5%2Fnetworking-blog%2Ftroubleshooting-kubernetes-networking-on-windows-part-1%2Fba-p%2F508648
https://techcommunity.microsoft.com/
https://techcommunity.microsoft.com/t5/custom/page/page-id/Blogs
https://techcommunity.microsoft.com/t5/Community-Info-Center/ct-p/Community-Info-Center
https://go.microsoft.com/fwlink/?LinkId=521839

11/08/2021 Troubleshooting Kubernetes Networking on Windows: Part 1 - Microsoft Tech Community

T
POd N eJ[WO rk | ﬂ g Windows Server Host

» Forevery pod, there is a “pause” container paine
(infrastructure container) Ethernet
10.244.4.5

* Endpoint or vNIC is initially attached to “pause”

container Network
10.244.4.0/24

vSwitch

Shared pause container vNIC in a pod

Here are the corresponding event logs from kubectl describe output, where we accidentally built our "kubeletwin/pause” image on top of a Windows Server, version 1803 container image and ran it on a Windows Server 2019 host:

Age From

17m ¢ u 5] - inxd to win-24elfepiBdd

start container “win

BCr L e T i

3e5eB897eacadbddbesaf

tem windowsweb

Erroneous Kubernetes event logs

(On a side note, this specific example issue can be avoided altogether if one references the multi-arch pause container image mcr.microsoft.com/k8s/core/pause:1.0.0 which will run on both Windows Server, version 1803 and Windows Server 2019).

Step 4: Analyze kubelet, kube-proxy logs

Another useful source of information that can be leveraged to perform root-cause analysis for failing container creations is the kubelet, FlannelD, and kube-proxy logs.

These components all have different responsibilities. Here is a very brief summary of what they do which should give you a rough idea on what to watch out for:

Component Responsibility When to inspect?

Erroneous pod

Kubelet Interacts with container runtime (e.g. Dockershim) to bring up containers and pods.]])
creations/configurations
Mysterious network
Kub Manages network connectivity for containers (programming policies used for NAT'ing or load glitches, in particular for
ube-proxy i o
balancing). service discovery and

communication

Responsible for keeping all the nodes in sync with the rest of the cluster for events such as node o
o)] o] Failing inter-node
FlannelD removal/addition. This consists of assigning IP blocks (pod subnets) to nodes as well as plumbing it
connectivi
routes for inter-node connectivity. Y

Log files for all of these components can be found in different locations; by default a log dump for kubelet and kube-proxy is generated in the C:\k directory, though some users opt to log to a different directory.
If the logs appear to not have updated in a longer time, then perhaps the process is stuck, and a simple restart or sending the right signal can kick things back into place.

Step 5: Inspect CNI network plugin configuration

Another common source of problems that can cause containers to fail to start with errors such as “FailedCreatePodSandbox” is having a misconfigured CNI plugin and/or config. This usually occurs whenever there are bugs or typos in the deployment scripts that are used to configure nodes:

fge From Message

Normal Scheduled default-scheduler Successfully assigned default/win-webserver-7fedfdffef-g235d to win-gqleogglvscd

kubelet, win-gleogglvscd Failed create pod sandbox: rpc error: code = Unknown desc = failed to set up sandbox container "d537d3ed

] bserver-7fe4faffaf-g235d": NetworkPlugin cni failed to set up pod "win-webserver-7fe4f4ff9

F-g2j5d_default" network:|error while executing ADD command:|error while ProvisionEndpoint(d537d3edb6fat84284133767161%9cf75df2fel8alod512¢cc2fSbdaRalSaTf4a cbrd, ACZTEREC-B

AM-4958-B5A8-619CA883004E ,d537d3edbEfa084284133767F61%ecf75df2fe1BaBo4512cc 2f5bdada25aTf4a): failed to create the new HMNSEndpoint: hnsCall failed in Win32: There was an o
peration attempted on a degraded object. (@x883bed17)

Example error due to misconfigured CNI config

Thankfully, the network configuration that is passed to CNI plugins in order to plumb networking into containers is a very simple static file that is easy to access. On Windows, this configuration file is stored under the “C:\k\cni\config\" directory. On Linux, a similar file exists in “/etc/cni/net.d/".

Here is the corresponding typo that caused pods to fail to start due to degraded networking state:

"MName": "EndpointPolicy”,
"WValue™: {
"Type": "OutBoundNAT™,
"ExceptionlList": |
I "18.244.8.8/",
R L T
"18.127.138.8,/24"
]
¥

Highlighted Typo in CNI Config

Whenever there are failing pod creations or unexpected network plumbing, we should always inspect the CNI config file for typos and consult the CNI plugins documentation for more details on what is expected. Here are the docs for the Windows plugins:
* win-bridge
* win-overlay

¢ flannel

Step 6: Verify HNS networking state

Having exhaustively examined Kubernetes-specific event logs and configuration files previously, the next step usually consists of collecting network information programmed on the networking stack (control plane and data plane) used by containers. All of the information can be collected conveniently by the “CollectLogs.ps1”

script, which will be done in step 7.

Before reviewing the contents of the “"CollectLogs.ps1” tool, the Windows container networking architecture needs to be understood at a high-level.

China 2018

|Wind0ws Container Networking cavecon | oocdiie

ROOT
Namespace

Ethernet

192 168.0.5 | 00:15:aa:bb:cc:dd |

Windows container networking Overview

Windows Component Responsibilities Linux Counterpart

® Logical separation in the TCP/IP stack.
® Packet forwarding between

compartments is prevented (by default).

Network Compartment Network namespace

* All IP objects (addresses, routes, etc.) stay

unique to the compartment.

® Provides L2 switching and L3
functionality.
® Each vSwitch has its own forwarding table
and forwards packets based on MAC
vSwitch and HNS networks address or VLAN tag. Bridge and IP routing
* Dynamically add/remove switch ports.
* 1 (external) vSwitch / NIC.
® 1 vSwitch / HNS network.

¢ Container NICs (vNICs) are bound to a

corresponding port in the vSwitch.

vNICs, HNS endpoints, and vSwitch ports o IP Links and virtual network interfaces

Endpoints are a HNS abstraction for a

container vNIC.

* VFP is the programmable, match-action
based filtering engine.

* Applies rules to incoming outgoing

HNS policies, VFP rules, Firewall iptables

packets from vPort.

® VFP rules are different for each vPort.

One particular component to highlight is VFP (Virtual Filtering Platform), which is a vSwitch extension containing most of the decision logic used to route packets correctly from source to destination by defining operations to be performed on packets such as:
* Encapsulating/Decapsulating packets
* Load balancing packets
* Network Address Translation
* Network ACLs

Ski B fmater aavigetion

https://techcommunity.microsoft.com/t5/networking-blog/troubleshooting-kubernetes-networking-on-windows-part-1/ba-p/508648 2/7

https://github.com/containernetworking/plugins/tree/master/plugins/main/windows/win-bridge
https://github.com/containernetworking/plugins/tree/master/plugins/main/windows/win-overlay
https://github.com/containernetworking/plugins/tree/master/plugins/meta/flannel#windows-support-experimental
https://github.com/Microsoft/SDN/blob/master/Kubernetes/windows/debug/collectlogs.ps1

11/08/2021
S
e = Container
T 1
Metering
i1
Egress -> Inbound ACLs
| -
ACLs, Metering, Security VNET
VNET Ingress -> Outbound i1
SLB (NAT) SLB
Ingress _I I—}
Inbound Outbound
(Egress) (Ingress)

VFP Translates L2 extensibility (ingress/egress to switch) to L3 extensibility (inbound/outbound to VM)

Overview of Virtual Filtering Platform (VFP)

To read up more on this topic, many more details on VFP can be found here.

Our first starting point should be to check that all the HNS resources indeed exist. Here is an example screenshot that shows the HNS networking state for a cluster with kube-DNS service (10.96.0.10) and a sample Windows web service (10.104.193.123) backed by 2 endpoint DIPs ("768b4bd1-774c-47e8-904f-91c007a4b183",

"048cd973-b5db-45a6-9c65-16dec22e871d"):

PS C:\k> hnsdiag list all

Networks:

Name ID

nat 4EB64BE3-7724-4E14-BF1C-14EDEEEAACES
External SCEFEB28-859E-499B-A267 -6DDF 2F@c4BAE
cbré EB3BE224-D184-4F51-9516-7A4BC4AD28BEST

Endpoints:

Name ID Virtual Network MName
cbré_ep B8c956a28-97db-48a5-abte@-t181at879bbd cbré

Ethernet @BcedatB-ecll-461la-b673-5%9e6bf3aad44e chbré

Ethernet S@fbd2ff-f238-464e-a2a4-11569c4e2935 cbré

99d5deb7893d79974c5feedfo2ecdbdd3ibfb347ba29912fcb3adaed95a7f71b_cbr@ 848cd973-b5db-45a6-9c65-16dec22e871d cbré

Ethernet 611Fb887-51a4-45cc-9d61-9%eBe?cdddeS chré

Troubleshooting Kubernetes Networking on Windows: Part 1 - Microsoft Tech Community

79eabelsb@39b289532a6T4823985b61cfc9a23abd639a91a773584c5¢c1e®63c_cbré 768bdbdl-774c-47e8-9841-91c067ad4bl183 cbré

MNamespaces:
ID | Endpoint IDs

LoadBalancers:

ID | virtual IPs
6adeaBc5-3ca@-4b30-806f-dd76822feace |
cala6993-2c7b-4bBc-aee9-6569686ad143 |
643f8c94-af7a-4883-9c8f-b7675a0a0a84 |
93f5Se7ce-141c-485f-aS5c-6848d3dadeab |

PS C:\k>

18.96.0.1
18.96.08.18

Summary of typical Host Networking Service (HNS) objects

18.184.193.123

Direct IP IDs

768b4bdl -774c-4728-984F-91c887a4b183 B48cd973-b5db-45a6-9¢65-16dec22e871d
B8cedacB-ecll-46la-be73-59e6bfiaadde

oefbd2ff-f238-4642-a32a4-11569c422935 611Fb897-51a4-45cc-9d61-9%e8e7cdddes
768b4bdl -774¢c-47e8-984F-91c007a4b183 848cd973-b5db-45a6-9c65-16dec22e871d

We can take a closer look at the network object representing a given endpoint DIP using Get-HNS* cmdlets (this even works for remote endpoints!)

PS C:\k> get-hnsendpoint | ? ID

Activityld i BAFDSFAD-FASF-4859-9947-3A0568892583

additionalParams :
CreateProcessingStartTime : 132000913955753843
DNSServerList : 18.96.8.1@
DNSSuffix : svc.cluster.local
EncapOverhead T

GatewayaAddress : 18.244.19.2

: @{LastErrorCode=8; LastUpdateTime=132088913954743735}
: JoBBABD1-774C-47EE-904F-91CR87A4B183

i B8-15-5D-C9-3C-A4

: 79eabelsb@39b289532a0f4823985belcfc9a23aba39a91a773584c5¢c1ledo3c_chre

cceptionlist=5Sy

jpe=0OutBoundNAT}, @{DestinationPrefix=16.96.0.0/12; NeedEncap=True; Type=ROUTE},

@{DestinationPrefix=10.127.130.38/32; NeedEncap=True; Type=ROUTE}, @{Type=L2Driver}}

24

! @{AdditionalParams=; AllocationOrder=6; Allocators=System.Object[]; Health=;
ID=24FDSFAD-FASF-4859-9947-3A9560092583; PortOperationTime=8; State=1; SwitchOperationTime=8; VfpOperationTime=8;

parentId=4EBS7BE7-AY1E-4B17-A2

421EFE9891@}

: {79eabel9be39b289532a0T48239085b61cfc9a23ab4939291a773584¢c5¢c1eB63c,
e215chf78368 25ff37d94b46050825%e46aab82667bf7e6faacaf79e37c3}

i 132808913968967243

3
: L2Bridge
38654785666

firtualNetwork : EB3BE224-D184-4F51-9516-7A4BCADZBERT

firtualNetworkName : cbre

Typical HNS endpoint object

The information listed here (DNSSuffix, IPAddress, Type, VirtualNetworkName, and Policies should match what was passed in through the CNI config file.

Digging deeper, to view VFP rules we can use the inbox “vfpctrl” cmdlet. For example, to view the layers of the endpoint:

PS C:\k> vfpctrl /port 768b4bdl-774c-47e8-904f-91c807a4b183 /list-layer

ITEM LIST

LAYER : ACL_ENDPOINT_LAYER

Friendly name : ACL_ENDPOINT_LAYER

Priority : 15

LAYER : SLB_NAT_LAYER
Friendly name : SLB_NAT_LAYER

Flags : ©x9 Default Allow , Update flows on address change

Priority : 50

LAYER : SLB_DECAP_LAYER_STATEFUL

Friendly name : SLB_DECAP_LAYER STATEFUL
Flags : ©x9, Default Allow , Update flows on address change

Priority : 160

LAYER : CUSTOMER_ROUTE
Friendly name : CUSTOMER_ROUTE
Flags : ©x1, Default Allow
Priority : 1500

LAYER : VNET_PA_ROUTE_LAYER

Friendly name : VNET_PA ROUTE_LAYER

Flags : ©x1, Default Allow
Priority : 2000

Command list-layer succeeded!
PS C:\k> _

Listing VFP layers for a given container vPort

Similarly, to print the rules belonging to a specific layer (e.g. SLB_NAT_LAYER) that each packet goes through:

PS C:\k> vfpctrl /port 768b4bdl-774c-47e8-9041f-91c007a4b183 /layer SLB_NAT_LAYER /list-rule

ITEM LIST

GROUP : SLB_GROUP_NAT IPv4 IN

Friendly name : SLB_GROUP_NAT_IPv4 IN

Priority : 1@
Direction : IN
Type : IPv4
Conditions:
<{none>

Match type : Longest prefix match on Destination IP

RULE :
Friendly name : NAT_Allow
Priority : 65535
Flags : 1 terminating
Type : allow
Conditions:
<none>
Flow TTL: ©
FlagsEx : ©

GROUP : SLB_GROUP_NAT_IPv4_OUT
Friendly name : SLB_GROUP_NAT_IPv4 OUT
Priority : 30
Direction : OUT

Type : IPv4
Conditions:
<none>

Match type : Longest prefix match on Destination IP

RULE :

Friendly name : EXCEPTIONS_ OUTBOUNDNAT_3FECS9_10.127.130.3810.127.130.0

Priority : ©

Flags : 1 terminating
Type : allow
Conditions:

Destination IP : 16.127.130.0-18.127.136.255

Flow TTL: 246
FlagsEx : ©

Snippet of VFP rules for the SLB_NAT_LAYER of a container vPort

The information programmed into VFP should match with what was specified in the CNI config file and HNS Policies.

Step 7: Analyze snapshot of network using CollectLogs.psT1

Now that we familiarized ourselves with the state of the network and its basic constituents let's take a look at some common symptoms and correlate it against the likely locations where the culprit may be.

Our tool of choice to take a snapshot of our network is CollectLogs.ps1. It collects the following information (amongst a few other things):

File

endpoint.txt

ip.txt

network.txt

policy.txt

ports.txt

routes.txt

hnsdiag.txt

vfpOutput.txt

Contains

Endpoint information and HNS Policies applied to endpoints.

All NICs in all network compartments (and which)

Information about HNS networks

Information about HNS policies (e.g. VIP - > DIP Load Balancers)

Information about vSwitch (ports)

Route tables

Summary of all HNS resources

Verbose dump of all the VFP ports used by containers listing all layers and

associated rules

Example #1: Inter-node communication Issues

L2bridge / Flannel (host-gw)

When dealing with inter-node communication issues such as pod-to-pod connectivity across hosts, it is important to check static routes are programmed. This can be achieved by inspecting the routes.txt or uSkigEanEhisnRig oD

https://techcommunity.microsoft.com/t5/networking-blog/troubleshooting-kubernetes-networking-on-windows-part-1/ba-p/508648

3/7

https://www.microsoft.com/en-us/research/project/azure-virtual-filtering-platform/
https://github.com/Microsoft/SDN/blob/master/Kubernetes/windows/debug/collectlogs.ps1

11/08/2021 Troubleshooting Kubernetes Networking on Windows: Part 1 - Microsoft Tech Community

S C:\Users\Administrator> Get-NetRoute

ifIndex DestinationPrefix NextHop RouteMetric

255,255, 255,255/32
255.255,255.,255/32
255,255,255,255/32
255.255.255,255/32
224.0.0.0/4
224.0.0.0/4
224.0.0.0/4
224.9.0.0/4
172.17.63.255/32
172.17.48.1/32
172.17.48.0/20
127.255.255,.255/32
127.8.0.1/32
127.0.0.8/8
10.244.19.255/32
16.244.19.2/32
10.244.19.8/24
19.244.18.8/24
18.244.17.0/24
18.244.8.8/24
b.l2/.1349. 3.
19.127.130.38/32
10.127.130.0/24
9.0.0.09/0 18.244,19.1
©.0.0.0/0 10.127.1306.1

Get-NetRoute output highlighting static routes for pod networks

There should be routes programmed for each pod subnet (e.g. 10.244.18.0/24) => container host IP (e.g. 10.127.130.35).

When using Flannel, users can also consult the FlannelD output to watch for the appropriate events for adding the pod subnets after launch:

Ca

route_network_windows :51] Watching for new subnet leases

route_netw iindo :94] Subnet added: 19.244.8.8 ia 18.127.13
route_netw i 1947 Subnet added: !

route_networ

i
A LA LA
o oo

Ln
(]
S S S

Flannel "subnet lease" events

Overlay (Flannel vxlan)
In overlay, inter-node connectivity is implemented using "REMOTESUBNETROUTE" rules in VFP. Instead of checking static routes, we can reference "REMOTESUBNETROUTE" rules directly in vfpoutput.txt, where each pod subnet (e.g. 10.244.2.0/24) assigned to a node should have its corresponding destination IP (e.g. 10.127.130.38)

specified as the destination in the outer packet:

RULE : REMOTESUBNETROUTE_ENCAP_ 4A248 16.244.2.8 24 4896 16.127.136.238 8e-15-5D-F9-D2-63
Friendly name : REMOTESUBMETROUTE ENCAP 4A248 10.244.2.8 24 4896 10.127.138.38 86-15-5D-F9-D2-63
Priority : 1@

Flags : 1 terminating
Type : routeencap
Conditions:
Destination IP : 19.244.2.9-16.244.2.
O I
Rule Data:
Encap Type: VXLAN
Fixing inner MAC
Using source PA MAC
Decrementing TTL
Encap Source
Encap Destination(s) :
{ IP address=16.127.138.38, MAC address=88-15-5D-F2-D2-63, GRE key=4896 }

FlagsEx : @

RULE : REMOTESUBMETROUTE_ENCAP_4BODD 18.244.08.8 24 4696 16.127.138.37 F6-3C-2E-AB-57-6A
Friendly name : REMOTESUBNETROUTE_ENCAP 4B9DD 16.244.8.8 24 4896 10.127.138.37 F6-3C-2E-AB-57-6A
Priority : 18
Flags : 1 terminating
Type : routeencap
Conditions:

Destination IP : 18.244.8.8-16.244.8.
Flow TTL: 8
Rule Data:
Encap Type: VXLAN
Fixing inner MAC
Using source PA MAC
Decrementing TTL
Encap Source
Encap Destination(s) :
{ IP address=18.127.138.37, MAC address=F6-3C-2E-AB-57-6A, GRE key=4896]

FlagsEx : 8

VFP RemoteSubnetRoute rules used for VXLAN packet encapsulation

For additional details on inter-node container to container connectivity in overlay, please take a look at this video.

When can | encounter this issue?
One common configuration problem that manifests in this symptom is having mismatched networking configuration on Linux/Windows.

To double-check the network configuration on Linux, users can consult the CNI config file stored in /etc/cni/net.d/. In the case of Flannel on Linux, this file can also be embedded into the container, so users may need to exec into the Flannel pod itself to access it:

kubectl exec —n kube-system kube-flannel-ds—amd64-<someid> cat /etc/kube-flannel/net-conf.json
kubectl exec -n kube-system kube-flannel-ds—amd64-<someid> cat /etc/kube-flannel/cni-conf.json

Example #2: Containers cannot reach the outside world

Whenever outbound connectivity does not work, one of the first starting points is to ensure that there exists a NIC in the container. For this, we can consult the “ip.txt” output and compare it with the output of an “docker exec <id> ipconfig /all” in the problematic (running) container itself:

Host MName * WIN-24ELFEPIBD9

Primary Dns Suffix

Mode Type : Hybrid

IP Routing Enabled. : No

WINS Proxy « = « = =« « - : NoO

DNS Suffix .« « - - - @ default.svc.cluster.local

Ethernet adapter vEthernet (586dcif4482fadedbad341f638e511366268e1195173b268961deaa?1767T1883d cbra):

Connection-specific DNS Suffix . : default.svc.cluster.local
Description : Hyper-V Virtual Ethernet Adapter #5
Physical Address. : BB8-15-5D-E1-56-F4
DHCP Enabled. : Yes
Autoconfiguration Enabled @ Yes
Link-local IPv6 Address : feB@::89ed:edd.fb9:8a41%46(Preferred)
IPvd Address. : 18.244 .4 7(Preferred)
Subnet Mask : 255.255.255.8
Default Gateway : 18.244.4.2
DNS Servers & I 18.96.8.18
NetBIOS over Tcpip. : Disabled
Connection-specific DNS Suffix Search List :
default.svc.cluster.local

Reference Container NIC in network compartment 2

In 12bridge networking (used by Flannel host-gw backend), the container gateway should be set to the 2. address exclusively reserved for the bridge endpoint (cbrO_ep) in the same pod subnet.

In overlay networking (used by Flannel vxlan backend), the container gateway should be set to the .1 address exclusively reserved for the DR (distributed router) vNIC in the same pod subnet.

L2bridge

Going outside of the container, on I2bridge one should also verify that the route tables on the node itself are setup correctly for the bridge endpoint. Here is a sample with the relevant entries containing quad-zero routes for a node with pod subnet 10.244.19.0/24:

S C:\Users\Administrator> Get-NetRoute

ifIndex DestinationPrefix NextHop RouteMetric

255,255,255,255/32
255,255,255,255/32
255,255,255,255/32
255.255,.255,255/32
224.0.0.0/4
224.9.90.0/4
224.9.0.0/4
224.0.0.0/4
172.17.63.255/32
172.17.48.1/32
172.17.48.0/20
127.255.255.255/32
127.90.0.1/32
127.8.86.8/8

18.244.

18.244.

18.244.
19.127.138.255/32
18.127.130.38/32
18.127.136.68/24
8.6.8.8/8
0.0.0.0,0

Quad-zero static routes for a node with pod subnet 10.244.19.0/24

The next thing to check on [2bridge is verify that the OutboundNAT policy and the ExceptionList is programmed correctly. For a given endpoint (e.g. 10.244.4.7) we should verify in the endpoint.txt that there exists an OutboundNAT HNS Policy and that the ExceptionList matches with what we entered into the deployment scripts

originally:

“ID": “G2BE8992D-65A7-4E30-BEAS-B19856BF248A",

"IPAddress": "18.244.4.7",

"MacAddress™: "88-15-SD-E1-56-F4",

"Name"”: “Se6dc7f4482fadedbad341f638e51T30620eT195173b268%01deaa%1761T1883d _cbra™,
"Policies™: [

"ExceptionlList™: [

1:

"Type": "OutBoundNAT"

"DestinationPrefix”: "18.96.8
"NeedEncap™: true,
"Type": “ROUTE"

"DestinationPrefix™: “18.:
"NeedEncap”: true,
L1 T}Irpel! : L 1] R‘DL'TE“

"L2Driver”

HNS Policies for a typical [2bridge endpoint

Finally, we can also consult the vfpOutput.txt to verify that the L2Rewrite rule exists so that the container MAC is rewritten to the host's MAC as specified in the [2bridge container networking_docs.

In the EXTERNAL_L2_REWRITE layer, there should be a rule which matches the container’s source MAC (e.g. "00-15-5D-AA-87-B8") and rewrites it to match the host's MAC address (e.g. "00-15-5D-05-C3-0C"):

Ski B fmater aavigetion

https://techcommunity.microsoft.com/t5/networking-blog/troubleshooting-kubernetes-networking-on-windows-part-1/ba-p/508648 477

https://www.youtube.com/watch?v=qY_84rrYYYY
https://docs.microsoft.com/en-us/virtualization/windowscontainers/container-networking/network-drivers-topologies

11/08/2021
LAYER : EXTERNAL_ L2 REWRITE_LAYER
Friendly name : EXTERNAL L2 REWRITE LAYER
Priority : 5848

GROUP : EXTERNAL_L2 REWRITE GROUP IPV4 IN
Friendly name : EXTERNAL L2 REWRITE GROUP IPV4 IN
Priority : @

Direction : IN
Type : IPv4
Conditions:
<none>

Match type : Longest prefix match on Destination IP

RULE : FCYCEEZ29-4FF1-4A12-B3FD-A7622C496309C to EN
Priority : 208
Flags : 1 terminating
Type : transposition
Conditions:
Source MAC : 88-15-5D-AA-B7-BE
Flow TTL: 8
Transposition:
Modify:
Source MAC: 8@-15-5D-85-C3-8C
FlagsEx : ©

Reference EXTERNAL_L2_REWRITE_LAYER with rules transposing a container MAC to a host MAC

Overlay

Troubleshooting Kubernetes Networking on Windows: Part 1 - Microsoft Tech Community

For overlay, we can check whether there exists an ENCAP rule that encapsulates outgoing packets correctly with the hosts IP. For example, for a given pod subnet (10.244.3.0/24) with host IP 10.127.130.36:

RULE : ENCAP 16.244.3.1
Friendly name : ENCAP 16.244.3.1
Priority : 188
Flags : 1 terminating
Type : mapenca
Conditions:
Destination IP : 18.244.3.8-1

Rule Data:

Map space : 21A6C3A3-313D-4D35-988D-A1CE27AABAEC

GRE key : 4896

Encap Type: VXLAN

CA routing enabled

Encap Source IP : 18.127.

Reference encapsulation rule used by overlay container networks

When can | encounter this issue?

One example configuration error for Flannel (vxlan) overlay that may results in failing east/west connectivity is failing to delete the old SourceVIPjson file whenever the same node is deleted and re-joined to a cluster.

NOTE: When deploying L2bridge networks on Azure, user's also need to configure user-defined routes for each pod subnet allocated to a node for networking to work. Some users opt to use overlay in public cloud environments for that reason instead, where this step isn't needed.

Example #3: Services / Load-balancing does not work

Let's say we have created a Kubernetes service called “win-webserver” with VIP 10.102.220.146:

EX Administrator Windows PowerShell

PS C:\k> kubectl get svc/win-webserver

NAME TYPE CLUSTER-

IP EXTERNAL-IP PORT(S) AGE

win-webserver NodePort 10.102.220.146 <none> 80:31486/TCP 91m

Example Kubernetes service on Windows

Load Balancing is usually performed directly on the node itself by replacing the destination VIP (Service IP) with a specified DIP (pod IP). HNS Loadbalancers can be viewed using the “hnsdiag” cmdlet:

PS C:\k> hnsdiag list loadbalancers

ID | virtual IPs
Gbac3ce@-ae79-4bda-adda-bde3c7E1710a | 10.96.0.1
ce3BBecT-4ae7-49d1-965e-3ec3el5c758 | 18.96.8.1@
44cel995-dd12-4198-bfo4-1faa@e966d6a 18.96.8.18@
8792b3le-4atf-4691-badb-feal74@29583 18.182.228.146

Typical HNS Loadbalancer objects on Windows

Direct IP IDs

4dbbecal-ccfa-485c-86f3-dddoeb331894

cB885f112-6Ta3-45de-85e9-16884c91c353 92128f23-27a5-4ada-8bl16-7bdbbh@889757
CBB5f112-6fa3-45de-85e9-16084c91¢353 92128F23-27a5-4ada-8ble-7bdbbeB8B9757
4d1dlbBc-cl2d-461a-36B8-11825b6a9189 fde55279-a198-4bd8-a389-2b5

For a more verbose output, users can also inspect policy.txt to check for “ELB” policies (LoadBalancers) for additional information:

"ID": "“8792B31E-4AFF-46591-BB4B-FEAL174029583",
"IsApplied”: false,
[

"ExternalPort”
"InternalPort™:
"Protocol”: 6,
"Type™: "ELB",
"WIPs": |

"18.1682.228.146™

1.

"References™: [

" /endpoints/4d1dib8c-c12d-461a-a688-11825b6an139",
"/endpoints/fde55279-a198-4bd8-a389-2b58d9708c609b”

P

Example HNS LoadBalancer configuration in policy.txt

The next step usually consists of verifying that the endpoints (e.g. "4d1d1b8c-c12d-461a-a608-11825b6a9189") still exist in endpoint.txt and are reachable by IP from the same source:

"ID": “4DID1BBC-C12D-461A-ARBE-11825B6A0129",
"IPAddress"™: "18.244.19.31",

"MacAddress™: "@8-15-S5D-AA-2F-3D",

"Mame": “d9cbbSe6f8ef643chd84068FbebSbd255930
"Policies": [

"ExceptionList™: [

4461eab3d _ 4 f

16 .0
"18.:
"18.

1.

"Type™: "OutBoundNAT"

"DestinationPrefix"™:
"NeedEncap”: true,
L T}.r FIE 11 : n R‘DL'TE L]

"DestinationPrefix"™:
"NeedEncap”: true,
"Type™: “ROUTE"

"Type™: "L2Driver"

Example pod DIP endpoint referenced by a HNS Loadbalancer

Finally, we can also check whether the VFP "lbnat" rules exist in the "LB" layer for our service IP 10.102.220.146 (with NodePort 31486):

Friendly name : LB 72C28 18.127.138.38 18. -

Priority : 186

Flags : 1 terminating

Type : lbnat

Conditions:
Protocols : 6
Destination IP : :
Destination ports

Rule Data:

Decrementing TTL

Fixing MAC

Modifying destination IP
Modifying destination port
Creating a flow pair

220.146 80 88 6

Map space : 53F19CE3-474C-4859-08F5-278081DD5A4F

Count of DIP
DIP Range(s)
{ 18..

Friendly name : LB _B6C16 18.127

Priority : 108

Flags : 1 terminating

Type : lbnat

Conditions:
Frotocols : 6
Destination IP : 18.127.136.3
D tion p 1486

Rule Data:

Decrementing TTL

Fixing MAC

Modifying destination IP
Modifying destination port
Creating a flow pair

Map space : 53F19CE3-474C-4859-93F5-8788810DD5A4F

Count of DIP Ranges: 2
DIP Range(s)

244,19, 3!
§.244 19,
FlagsEx :

Reference VFP rules used for load-balancing containers

When can | encounter this issue?

One possible issue that can cause erroneous load balancing is a misconfigured kube-proxy which is responsible for programming these policies. For example, one may fail to pass in the --hostname-override parameter, causing endpoints from the local host to be deleted.

NOTE that service VIP resolution from the Windows node itself is not supported on Windows Server 2019, but planned for Windows Server, version 1903.

Example #4: DNS resolution is not working from within the container

For this example, let's assume that the kube-DNS cluster addon is confi

gured with service IP 10.96.0.10.

Failing DNS resolution is often a symptom of one of the previous examples. For example, (external) DNS resolution would fail if outbound connectivity isn’t present or resolution could also fail if we cannot reach the kube-DNS service.

Thus, the first troubleshooting step should be to analyze whether the kube-DNS service (e.g. 10.96.0.10) is programmed as a HNS LoadBalancer correctly on the problematic node:

"Health": {

.
I

IFID“:

"IsApplied”: Afalse,

"Policies™: [

"ExternalPort™:
"InternalPort™:
"Protocol™: 17,
"Type": "ELB",
"WIPs": |

"18.96.8.18"

1,

"References™: [

P

HNS LoadBalancer object representing kube-DNS service

Next, we should also check whether the DNS information is set correctly in the ip.txt entry for the container NIC itself:

https://techcommunity.microsoft.com/t5/networking-blog/troubleshooting-kubernetes-networking-on-windows-part-1/ba-p/508648

Ski B fmater aavigetion

5/7

https://docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/common-problems#on-flannel-vxlan-mode-my-pods-are-having-connectivity-issues-after-rejoining-the-node
https://docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/common-problems#after-some-time-vnics-and-hns-endpoints-of-containers-are-being-deleted
https://docs.microsoft.com/en-us/azure/virtual-network/tutorial-create-route-table-portal
https://docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/common-problems#my-windows-node-cannot-access-my-services-using-the-service-ip

11/08/2021

Host Name « « -« . - : WIN-Z4ELFEPIED9

Primary Dns Suffix

Mode Type - . . : Hybrid

IP Routing Enabled. : HNo

WINS Proxy Enabled. : No

DN5 Suffix Search List. : default.svc.cluster.local

Ethernet adapter vEthernet (745adc2248ed418f3ce@l4f92715b8cdel87728a677aalbbd4a71f4086266966C cbhrd):

Connection-specific DNS Suffix . : default.svc.cluster.local
Description : Hyper-V Virtual Ethernet Adapter #6
Physical Address. : 8@-15-5D-E1-58-28
DHCP Enmabled. : No
Autoconfiguration Enabled : Yes
Link-local IPvé Address : feB8::8493:b5bd:ede6:d73ek5a(Preferred)
IPv4 Address. ! 18.244 4 8(Preferred)
Subnet Mask : 255.255.255.8
Default Gateway : 18.244.4.2
DNS Servers : 18.9.8.18

over - - - - - - - - Lisabled
Connection-specific DNS Suffix Search List :

default.svc.cluster.local

Reference DNS configuration in a Windows pod

We should also check whether it's possible to reach the kube-DNS pods directly and whether that works. This may indicate that there is some problem in resolving the DNS service VIP itself. For example, assuming that one of the DNS pods has IP 10.244.0.3:

PS C:\k> docker exec Bbc powershell.exe resolve-dnsname kubernetes.default.svc.cluster.local 18.244.8.3
Name Type TTL Section IPAddres

cubernetes.default.svec.cluster.local S Answer 18.96.8.
1

Sending a DNS request directly to the DNS pod endpoint

When can | encounter this issue?

One possible misconfiguration that results in DNS resolution problems is an incorrect DNS suffix or DNS service IP which was specified in the CNI config here and here.

Step 8: Capture packets and analyze flows

The last step requires in-depth knowledge of the operations that packets from containers undergo and the network flow. As such, it is also the most time-consuming to perform and will vary depending on the observed issue. At a high level, it consists of:

1. Running startpacketcapture to start the trace

2. Reproducing the issue — e.g. sending packets from source to destination
3. Running stoppacketcapture to stop the trace

4. Analyzing correct processing by the data path at each step

Here are a few example animations that showcase some common container network traffic flows:

Pod to Pod:

POD1 -> POD2
POD1 NS1 POD2 NS2

192.168.1.3 ﬁ 192,168.1.4
00:15:aa:bb:cc:1 00:15:aa:bb:cc:22
192.168.1.3:5555>192.168.1.4:80

ROOT : | Ethernet
i
|

Namespace - porT3 VSwitch PorT4
192.168.0.5 L ___ _ACLS, Uos .
00:15:aa:bb:cc:dd A | L

Animated visualization showing pod to pod connectivity

Pod to Internet:

PODA1 -= Internet

POD1 NS1’ POD2 NS2

192.168.1.3 .‘ 192.168.1.4
00:15:aa:bb:cc:11 00:15:aa:bb:cc:22
192.168.1.3:5555=8.8.8.8:53

ROOT
Namespace

192.168.0.5
00:15:aa:bb:cc:dd

Forwarding

T Y L O S W] ITT..:.:.'.:

Animated visualization showing pod to outbound connectivity

Pod to Service:

POD1 -> Service VIP

POD1 NS, POD2 NS2

192.168.1.3 .‘ 192.168.1.4

00:15:aa:bb:cc:11 00:15:aa:bb:cc 22
192.168.1.3:5555>10.0.0.10:53

ROOT
Namespace

192.168.0.5
00:15:aa:bb:cc:dd

e e e]

LB | 10.0.0.10:53 | 192.168.1.4:53
192.168.1.3:53

Animated visualization showing pod to service connectivity

Troubleshooting Kubernetes Networking on Windows: Part 1 - Microsoft Tech Community

Showing how to analyze and debug these packet captures will be done in future part(s) of this blog post series through scenario-driven videos showing packet captures for supported networking flows on Windows.

For a quick teaser, here is a video recording taken at KubeCon that shows debugging an issue live using startpacketcapture.cmd: https://www.youtube.com/watch?v=tTZFoiLObX4&t=1733

Summary
We looked at:

1. Automated scripts that can be used to verify basic connectivity and correct installation of Kubernetes
2. HNS networking objects and VFP rules used to network containers

3. How to query event logs from different Kubernetes components

4. How to analyze the control path at a high level for common configuration errors using CollectLogs.ps1

5. Typical network packet flows for common connectivity scenarios

Performing the above steps can go a great length towards understanding the underlying issue for an observed symptom, improve efficacy when it comes to implementing workarounds, and accelerate the speed at which fixes are implemented by others, having already performed the initial investigation work.

What's next?

In the future, we will go over supported connectivity scenarios and specific steps on how to troubleshoot each one of them in-depth. These will build on top of the materials presented here but also contain videos analyzing packet captures, data-path analysis as well as other traces (e.g. HNS tracing).

We are looking for your feedback!

Last but not least, the Windows container networking team needs your feedback! What would you like to see next for container networking on Windows? Which bugs are preventing you from realizing your goals? Share your voice in the comments below, or fill out the following survey and influence our future investments!

Thank you for reading,
David Schott

*Special thanks to Dinesh Kumar Govindasamy (Microsoft) for his fantastic work creating & presenting many of the materials used as a basis for this blog at KubeCon Shanghai '18!

5 7 Likes

1 Comment

@ HVL71 Occasional Visitor

Dec 21 2019 03:01 PM

Thanks for a great article!

Unfortunately | already get stuck in step 1 when checking if kube-proxy is running. It would be very helpful with some troubleshooting tips in that scenario. I'm running 1.17 and have tried to follow a combination of these 2 documents multiple times:

https://docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/joining-windows-workers...

https://kubernetes.io/docs/setup/production-environment/windows/user-guide-windows-nodes/

4 0 Likes

You must be a registered user to add a comment. If you've already registered, sign in. Otherwise, register and sign in.

Comment

|2 Share

https://techcommunity.microsoft.com/t5/networking-blog/troubleshooting-kubernetes-networking-on-windows-part-1/ba-p/508648

Ski B fmater aavigetion

6/7

https://github.com/Microsoft/SDN/blob/master/Kubernetes/flannel/l2bridge/cni/config/cni.conf#L9
https://github.com/Microsoft/SDN/blob/master/Kubernetes/flannel/l2bridge/cni/config/cni.conf#L12
https://github.com/Microsoft/SDN/blob/master/Kubernetes/windows/debug/startpacketcapture.cmd
https://github.com/Microsoft/SDN/blob/master/Kubernetes/windows/debug/stoppacketcapture.cmd
https://www.youtube.com/watch?v=tTZFoiLObX4&t=1733
https://aka.ms/containernet2019
https://techcommunity.microsoft.com/t5/kudos/messagepage/board-id/NetworkingBlog/message-id/143/tab/all-users
https://techcommunity.microsoft.com/t5/blogs/v2/blogarticlepage.kudosbuttonv2.kudoentity:kudoentity/kudosable-gid/508648?t:ac=blog-id/NetworkingBlog/article-id/143&t:cp=kudos/contributions/tapletcontributionspage
http://www.addthis.com/bookmark.php?url=https%3A%2F%2Ftechcommunity.microsoft.com%2Ft5%2Fnetworking-blog%2Ftroubleshooting-kubernetes-networking-on-windows-part-1%2Fba-p%2F508648&title=Troubleshooting+Kubernetes+Networking+on+Windows%3A+Part+1&username=ra-58c9bc2b1cff027e
https://techcommunity.microsoft.com/t5/user/viewprofilepage/user-id/495899
https://techcommunity.microsoft.com/t5/user/viewprofilepage/user-id/495899
https://docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/joining-windows-workers?tabs=ManagementIP
https://kubernetes.io/docs/setup/production-environment/windows/user-guide-windows-nodes/
https://techcommunity.microsoft.com/t5/blogs/v2/blogarticlepage.kudosbuttonv2.kudoentity:kudoentity/kudosable-gid/1077605?t:ac=blog-id/NetworkingBlog/article-id/143&t:cp=kudos/contributions/tapletcontributionspage
https://techcommunity.microsoft.com/plugins/common/feature/oauth2sso/sso_login_redirect?lang=en&redirectreason=permissiondenied&referer=https%3A%2F%2Ftechcommunity.microsoft.com%2Ft5%2Fnetworking-blog%2Ftroubleshooting-kubernetes-networking-on-windows-part-1%2Fba-p%2F508648%23comment-on-this

11/08/2021

https://techcommunity.microsoft.com/t5/networking-blog/troubleshooting-kubernetes-networking-on-windows-part-1/ba-p/508648

What's new
Surface Pro X
Surface Laptop 3
Surface Pro 7
Windows 10 Apps
Office apps

Microsoft Store
Account profile

Download Center
Microsoft Store support
Returns

Order tracking

Store locations

Buy online, pick up in store

In-store events

Troubleshooting Kubernetes Networking on Windows: Part 1 - Microsoft Tech Community

Education

Microsoft in education

Office for students

Office for schools

Deals for students and parents

Microsoft Azure in education

Sitemap

Enterprise
Azure

AppSource
Automotive
Government
Healthcare
Manufacturing
Financial Services

Retail

Contact Microsoft Privacy

Developer

Microsoft Visual Studio
Window Dev Center
Developer Network

TechNet

Microsoft developer program
Channel 9

Office Dev Center

Microsoft Garage

Manage cookies Terms of use

Company

Careers

About Microsoft
Company News
Privacy at Microsoft
Investors

Diversity and inclusion
Accessibility

Security

Safety and eco About our ads

© 2021 Microsoft

717

https://www.microsoft.com/en-us/sitemap1.aspx
https://support.microsoft.com/contactus
https://go.microsoft.com/fwlink/?LinkId=521839
http://go.microsoft.com/fwlink/?LinkID=206977
https://www.microsoft.com/trademarks
https://www.microsoft.com/devices/safety-and-eco
https://choice.microsoft.com/
https://www.microsoft.com/p/surface-pro-x/8vdnrp2m6hhc?activetab=overview
https://www.microsoft.com/p/surface-laptop-3/8VFGGH1R94TM?activetab=overview
https://www.microsoft.com/p/surface-pro-7/8N17J0M5ZZQS?activetab=overview
https://www.microsoft.com/windows/windows-10-apps
https://store.office.com/appshome.aspx
https://account.microsoft.com/
https://www.microsoft.com/download
https://go.microsoft.com/fwlink/p/?LinkID=824761&clcid=0x409
https://go.microsoft.com/fwlink/p/?LinkID=824764&clcid=0x409
https://account.microsoft.com/orders
https://www.microsoft.com/en-us/store/locations/find-a-store?icid=en-us_UF_FAS
https://www.microsoft.com/en-us/store/b/buy-online-pick-up-in-store?icid=uhf_footer_bopuis
https://www.microsoft.com/en-us/store/locations/events?icid=en_us_store_uhf_events
https://www.microsoft.com/education
https://www.microsoft.com/education/products/office/default.aspx
https://products.office.com/academic/compare-office-365-education-plans
https://www.microsoft.com/en-us/store/b/education?icid=CNavfooter_Studentsandeducation
https://azure.microsoft.com/community/education/
https://azure.microsoft.com/
https://go.microsoft.com/fwlink/?LinkID=808093
https://www.microsoft.com/enterprise/automotive
https://www.microsoft.com/enterprise/government
https://www.microsoft.com/enterprise/health
https://www.microsoft.com/enterprise/manufacturing
https://www.microsoft.com/enterprise/financial-services/banking-and-capital-markets
https://www.microsoft.com/enterprise/retail-consumer-goods
https://visualstudio.microsoft.com/
https://developer.microsoft.com/windows
https://msdn.microsoft.com/
https://technet.microsoft.com/
https://developer.microsoft.com/store/register
https://channel9.msdn.com/
https://developer.microsoft.com/office
https://www.microsoft.com/garage/
https://careers.microsoft.com/
https://www.microsoft.com/en-us/about
https://news.microsoft.com/
https://privacy.microsoft.com/
https://www.microsoft.com/investor/default.aspx
https://www.microsoft.com/diversity/
https://www.microsoft.com/accessibility
https://www.microsoft.com/security/default.aspx

